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Abstract—Mechanical moduli of cultured airway smooth question the appropriateness of using these types of mod-
muscle cellsFabry, B.,et al. Phys. Rev. Let87:148102, 2001 ¢|s for describing the cell rheological behavior, however.
reveal that the frequency dependence of cell rheological behaV'Measurements of mechanical moduli over a wide range

ior conforms to a weak power-law relationship over a wide . . . .
range of frequency (IG—10° Hz). Such a behavior cannot be of forcing frequencies (10°~1C° Hz) in cultured airway

accounted for by standard viscoelastic models characterized bySmooth muscle cells have revealed the following
a discrete number of time constants that have been commonlyfeature$ The elastic(storagé modulus G’) increases

used in previous studies of cell viscoelasticity. Fractional cal- wijth increasing frequency according to a weak power
culus, by contrast, provides a natural framework for describing law with a power-law exponent of about 0.2. The fric-

weak power-law relationships and requires no assumptions i L dul " also foll th |
about the type of material, the time constant distribution or the ional (los9 modulus G") also follows the power law

time/frequency interval in which rheological observations are for at least three decades (16-10' Hz), but at higher
made. In this study, we developed a rheological model of the frequencies this dependence increases and approaches a

cell using methods of fractional calculus. We used a least- power-law exponent of 1 at very high frequencies,
squares technique to fit the model to data previously obtained which, in turn, indicates Newtonian fluid behavior. This

from measurements on airway smooth muscle cells. The fit | d d imolies that th Il rheoloaical
provided an excellent correspondence to the data, and the estiPOWEr-law dependence implies that the cell rheologica

mated values of model parameters were physically plausible. behavior is not determined by specific molecular mecha-

The model leads to a novel and unexpected empirical link nisms, but rather might reflect a generic property of the

between dynamic viscoelastic behavior of the cytoskeleton and jntegrated system.

the static contractile stress that it bears.2603 Biomedical

Engineering Society.[DOI- 10.1114/1.1574026 Fabry and coll_eaguéshave shown that the observed
power-law behavior of cells conforms closely to the fol-

Keywords—Power law, Elastic modulus, Frictional modulus, lowing empirically based relationships:

Frequency, Modeling, Contractile force.
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INTRODUCTION (& G =Go(¢#0) F(l—k)0082

Rheological measurements on living cells have shown
that cell behavior is viscoelastic. Earlier techniques., and
micropipette aspiration, magnetic cytometry, microman-
ipulation measured the ongoing deformations in re- w \K wk
sponse to a step change in stress, or the creep (b) G”:GO((?T) Fa-ksin—0+ou, (1)
responsé;**?! and the ongoing changes in stress in re- 0
sponse to a step change in deformation, or the stress
relaxation'® These measurements were usually inter- Where w is the circular(radian frequency,G, and @,
preted in terms of simple viscoelastic models character- are scaling factors for stiffness and frequency, respec-
ized by a discrete number of time constants. Recenttively, k is the power-law exponent (0k<1), u is a
developments of oscillatory magnetic cytometry call into Ccoefficient of Newtonian viscous damping aihg-) is

the gamma function. Wherk=0, G'=G,, and G”

Address correspondence to Dimitrije Stamenpubepartment of =w_,u, and hence, whem—0 the cell rhe_ologlcal _be'
Biomedical Engineering, Boston University, 44 Cummington Street, navior approaches that of Hookean elastic materials. In
Boston, MA 02215. Electronic mail: dimitrij@engc.bu.edu the limtk—1", G'—0, andG"~ w, i.e., the behavior
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Fractional Derivative Model of Cell Rheological Behavior

of Newtonian fluids. Thus, the earlier relationships de-
scribe the transition from a solid-likek&0) to a fluid-

like (k=1) rheological behavior of cells. The authors
provided an intriguing physical interpretation of the ob-
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v(0)=0; the proportionality between the stress and
strain implies the elastic Hookean behavior. When

=1, the fractional derivative is not defined. However, it
can be shown, using the Laplace transform, that in the

served behavior of the cells based on the theory of soft limit when a—1", Toth(“)(y)H'y(t) where the dot

glassy material§see Discussion

denotes the first time derivative; the proportionality be-

It has been shown that a rheological behavior that tween the stress and the rate of straiy) (mplies the
conforms to the power law can be described by using Newtonian viscous behavior. Thus, wherc@a<1, Eq.

methods of fractional calculds:**1619n this study we
used principles of fractional calculus to develop a math-
ematical model of cell rheological behavior. To illustrate
the applicability of this model, we analyzed the data for
oscillatory behavior of cultured airway smooth muscle
cells obtained previousf/We discuss our results in the
light of the theory of soft glassy materials and the notion

(3) describes a rheological behavior which is neither
purely elastic nor viscous. In this respect the order of the
fractional derivativea is analogous to the power expo-
nentk from Egs.(1a) and(1b). By transforming Eq(3)

into the frequency domain using the Fourier transform
one can obtain a relationship that conforms to a weak
power-law behavior witha being the power-law expo-

that the cell is organized as a stress-supported structurenent (see the next section

BASICS OF FRACTIONAL CALCULUS
AND ITS APPLICATION TO RHEOLOGY

Riemann’s definition of the fractional derivative of a
function f(-) is given as follows?

t f(7)
fo(t_T)ad

wheret is an independent variable 0x<<1 represents
the order of the derivative, arld(-) is the gamma func-
tion. A key difference between the classicahteger-
orden derivative and the fractional derivative is that the

1 d
[(1-a) dt

D{(f )= )

7-1

former represents a local property of a function, whereas Kelvin—\oigt linear viscoelastic model

the latter represents a global property of a function
within a given closed intervdlO,t].

During the past decades fractional calculus has found
a wide application in various branches of science and

engineering including transport phenomena, probability,

MODELING

A general rheological model based on fractional de-
rivatives is described as follows:

n
T+ bD§5)(T)=GSy+i§l D (y), (4

where the variables have the same meaning as if3g.

b and \;s are constant$;, is a static elastic modulus,
0=8<1 and C=a1<ay<...... <a,<1 are orders of
the fractional derivatives. In the casem& 1, b=0, and
a1=1, Eq. (4) becomes the equation of motion for the
In the case of
n=1 and a;=B8=1, Eq. (4) becomes the equation for
the standard linear solid. If, in addition,;=0, Eq. (4)
reduces to the Maxwell model. The most frequently used
rheological model with fractional derivatives is so-called
generalized Zener modéf'® which can be obtained

and economics. However, fractional calculus has enjoyed ¢, Eq. (4) by settingn=1. It has been showrthat for

greatest success in the field of rheology. The reason for

this is that fundamental properties of the fractional de-
rivative appear to be a natural framework for describing
the material behavior that conforms to a power law.

reasons of thermodynamic consisten@ge., the second
law of thermodynamigsthe following constraints have
to be imposed on the model parametets;=8, Gq

=0, \;>0, b>0, and\,/b>G; so that the model con-

Suppose that pure shear behavior of a material iS y5ing ‘only four independent parameters. Recently, a

described as follows:
TxD{"(y), (3)

whereT is shear stressy(t) is the corresponding shear
strain, andt is time. Since, by definition, the fractional

derivative represents a global property, then the right-

hand side of EQ.(3) is indicative of a change iny
throughout history of deformation. This is different from
the case of an integer-order derivative that would indi-
cate only the current change n Whena=0, it follows
from Egs.(2) and (3) that T<D{®)(y) = y(t), providing

model that has two fractional derivativea=¢2) on the
right-hand side of Eq.(4) such that a;=8 was
proposed? It was shown that in this model the thermo-
dynamic constraints on the model parameters are more
relaxed than in the previous model, i.ex,>pB and
N1/b>Gg; the later condition holds even whédn=0.
Model of cell rheology In this study we describe
previously published datafor the rheological behavior
of cultured airway smooth muscle cells during forced
oscillations from 102—10°* Hz using a fractional deriva-
tive model. These data exhibit a weak power-law behav-
ior; in the case ofG’ this behavior extends over the
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10° 2 namig modulus andi=+—1 is the imaginary unit. It
was found that
;(U\ 104 -
o gr o Gt Ehio)® -
2 1+b(iw)?
3 10°
o]
% o Taking the imaginary part of E45), we obtained that in
2 o v Histamine the limit of w—oe:
o ®  DBcAMP
¢ CytoD
N T
—— Model n__ N e B g —R)—
i G~ o Psin(an— ) 5 (6)
108 . whenb#0, and
g -
g 104 G~ N\ 0% smanE (7
[2]
2
é 108 - whenb=0. If b#0 and (@,—B8)—1, G” would assume
= the observed lineafi.e., Newtonian dependence om
g [see Eq.(6)]. Since botha,, and B8 take values between
g 10%1 0 and 1, this condition can be satisfied only whgn
e —0 anda,— 1. In this case the left hand side of Ed)
o reduces to (+b)T. If, however, we divide Eq(4) with
102 107 100 100 102 1(’)3 164 105 (1+b), we would obtain an expression which has the

Frequency o (rad/s)

FIGURE 1. (a) Elastic (storage ) modulus (G') and (b) fric-
tional (loss) modulus (G”) measured in cultured airway
smooth muscle cells increase with increasing circular fre-
quency (w) following a weak power law. Above  ~100 rad/s,
the dependence G” vs. w increases and asymptotically ap-
proaches the slope of unity at high frequencies. Different
symbols correspond to different cell stimulations: controls,
constrictor histamine  (10~* M), relaxant (DBCAMP, 102 M)
and actin disruptor cytoschalasin D (CytoD, 2 X107% Mm).
Adopted from data of Fabry et al. (see Ref. 6). The theoreti-
cal Egs. (12a) and (12b) provide a good correspondence to
these data.

observed frequency range whereas in the casg"othe
power-law behavior is observable below 10 Hz but at
higher frequencie§” asymptotically approaches the be-
havior that characterizes Newtonian fluiésig. 1). To
our knowledge this behavior d&” at high frequencies
has not been considered previously in fractional deriva-
tive models. In this study we incorporated this behavior
in the model of the cell.

We started from the general model given by E4).
We transformed this equation from the time domain into
the frequency domain using the Fourier integral trans-
form, F[ -]. Taking into account that the Fourier trans-
form of the fractional derivative of a functiord is
FID{*(f)]=(iw)°F[f], we obtained that F[T]
=G*F[y], where G*=G'+iG" is the complex(dy-

same form as ib=0. Based on the earlier considerations
we concluded that we could use E@) to describe the
behavior of G” of the cells at high frequencies only if
b=0 anda,=1.

To simulate the data for the oscillatory behavior of
airway smooth muscle celléFig. 1), we proposed the
simplest model that satisfies the above conditions, i.e.,
n=2, b=0, a,=1, and defined the parametexg=\,
No=u, a;=a where O=a<1. In this case, Eq(4)
becomes as follows:

T=Gsy+AD{*(7)+ ¥, ®)

By transforming Eq(8) into the frequency domain using
the Fourier integral transform, we obtained the following
expressions foG’ and G”:

ges
(a) G’ZGS-l-)\waCOS?

and

©)

T
(b) G"=)\w“SIn?+w,u.

According to Egs(9a and(9b), bothG’ andG” exhibit
a weak power-law dependence ®nAs w increases, the
second term on the right-hand side of Egb) (i.e., ww)
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becomes dominant which, in turn, implies Newtonian MODEL IMPLEMENTATION AND RESULTS

viscous behavior characterized by viscous dampingn ) )

the limit of w=0, G’ =G, which represents the static We used the model, E@8), to describe the oscillatory

elastic modulus. data of cultured airway smooth muscle cells obtained
To completely define the viscoelastic behavior, a Previously by Fabryetal® Briefly, the measurements

model has to be able to describe both stress relaxationWere done using the magnetic oscillatory cytometry tech-

and creep time responses in a self-consistent manner. Fopidue. In these measurements, sm@ls um diametey

the input step-strainy(t) = yoH(t), wherey, is a con- ferrimagnetic beads were coated with RGD peptide that

stant andH(t) is the unit step function, we obtained binds specifically to integrin receptors. The be&ds3

from Eq. (8) the relaxation modulusG(t)=T(t)/y,, as beads per cell apical surfacevere first magnetized by
follows: horizontal magnetic field and then twisted by a sinu-

soidal varying (10%—10° Hz) vertical magnetic field.
From the applied specific torque and measured corre-
sponding bead displacement, the compleynamio
stiffness (dimensions stress per unit displacemenas
obtained as the ratio of the 2. These data were then
transformed into traditional complexlynamig modulus

) G* (dimensions stre$dy multiplying the complex stiff-

that for t>0 G(t) decays according to a weak power- npags by a geometric factor that depends on the shape and
law t~“ and asymptotically approaches the static elastic ihickness of the cell and on the degree of bead internal-
modulus Gs as t—o. For t=0, G(0)—= (i.e. rigid ization in the celt® The real part ofG* is G’ and the

body behavior. _ _ imaginary part isG”. Measurements were done in con-
The creep response was obtained by assuming theyq| cells, in stimulated cells (IO M histaming, in

input step-stressT=TyH(t), where T, is a .consta.nt. relaxed  cells [10~3 M N°®,2'-O-dibutyryladenosine
This response, however, cou_ld no_t be ob.talned. directly 3',5'-cyclic monophosphatédBCAMP)], and in cells in
from Eq. (8), but by transforming this equation using the \yhich the actin network was disrupted X206 M cit-
Laplace integral transform and then calculating the creep ,chalasin D. (For further details see Fabst al).®
strain. Taking into accou_nt 'Fhat the Lapla(_:e trans_form, We fitted the modelEgs. (93 and(9b)] to the data by
L[-] of a fractional derivative of a functiorf(t) is minimizing the squared magnitude of the residuals of
L[D.§a)]zsa|-[f]'. wheres the parameter of the transfor- |55 G* summed over all frequencies and all drug treat-
mation, we obtained from Ed8) that ments conditions, with the constraint th&=0. The
minimization was performed using Microsoft Excel
solver. We obtained a set of values B¢, A, «, and u
(11 for each cell treatment condition. We found that the pa-
rameterG was close to zero for all treatment conditions.
Using a reduction-in-variance F-test we found that we
It is well known that the behavior of the Laplace trans- could eliminate the paramet&; altogether without sig-
form of a function in the limits ofs—o and s—0 nificantly changing the goodness of fit. We introduced
determines the behavior of the function in the limits of additional simplifications into Eqg9a) and (9b) by set-
t—0 and t—c, respectively: i, SL[y] ting Gs=0 and\=A,/Qg:
=lim_o.y(t), providing that these limits exiStTaking

N 1
G(t)ZGSH(t)+mt—a+M5(t), (10)

where §(t) is the delta function. It follows from Eq10)

To

Livl= (Gg+ NS+ us)s’

this into account, it follows from Eq(11) that in the G A w\Y 7a
limits of t—0 and t—o, the creep compliance) (@ G'=Ao Q, %2

=y(t)/T,, approaches 0 and G/, respectively.[The
existence of the limits lim.q.y(t) is shown in the Ap-
pendix. Since the theory of linear viscoelasticity de-
mands that in the limits oft—0 and t—o G(t) N
=14(t), it follows from the earlier results that the (b) G”=Ao<i) S 4 . 12)
model can predict the limits of the short and long time Qo 2

response of stress relaxation and creep in a self-

consistent manner. Fdr=0, the model predicts a rigid This allowed us to further reduce the number of param-
body behavior(i.e., G—« and J—0). Since such be- eters by constraining the fit to single values /o§ and
havior is not physically feasible, it follows that the (), that were independent of drug treatméhig. 1). We
model predictions in the time domain have physical obtained a unique set of values farp and (), whereas
meaning only fort>0. the values fora and w depended upon cell treatment

and
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TABLE 1. Estimated model parameters. Parameter values Ao, has no direct effect om. This is not surprising since if
o, @ and y obtained by fitting Egs.  (12a) and (12b) fo the w were indicative of cell cytoplasmic viscosity, then it

experimental data of Fabry et al. (see Ref. 6). Confidence .
intervals are given with each parameter value. The values of should not depend on the extent of contractile stress of

Ao and Qg are the same for all cell treatments. the cytoskeleton.
Ao Qo M
Treatment (kPa) (rad/s) @ (Pa-s)
Control 38.93%2 20138 x107 0.185)738  1.76725
Histamine 0.164075  1.2313% DISCUSSION
DBCAMP 0.25693% 15015
CytoD 0.313332%  0.7855%

In this study we developed a mathematical model
based on the principles of fractional calculus to describe
the rheological behavior airway smooth muscle cells.
(Table 3. Such obtained values far and x were similar ~ The most favorable aspect of this approach is that it
to those obtained with Eq$9a) and (9b). In both cases, represents a natural mathematical framework for describ-
Egs. (9a) and (9b) and Egs.(12a and (12b), estimated  ing the power-law behavior that is exhibited by the cells.
values ofu obtained for different drug treatments did not Such a behavior can be also accounted for by general-
seem to change systematically with drug treatments. iZed viscoelastic models that are described by hereditary

However, when the same value of was used for all integrals[generalized Maxwell and generalized Kelvin—

drug treatments, the residual variance increased slightly Voigt models(cf. Fung].” However, in all such models a

but significantly p<0.05). distribution of time constants needs to be prescribed em-
We analyzed the sensitivity of the fit of Eq&l2a pirically, whereas in models with fractional derivatives

and (12b) to variability in the data by determining the such a distribution is a consequence of the definition of
95% confidence interval of the parameter estimates. Wwethe fractional derivative. Another advantage of the frac-
observed that the Variabi"ty in the primary da’@’(and tional derivative formulation is that it is described by
G”) between beads at a given frequency and treatment"near integrodifferential equations. This, in turn, makes
was approximately proportional to the magnitudeGf possible easy transfer between the time and frequency
or G”, respectively. The underlying log-normal probabil- domains using the Fourier and Laplace integral
ity function of G’ andG” in airway smooth muscle cells  transforms.

has been analyzed in detail elsewh®fEhe logarithmic Selection of model parameters was not entiraly
standard deviation of botB’ andG” measurements was hoc Besides satisfying thermodynamic constrains, values
approximately 2.1, regardless of frequency and treatmentof model parameters were also dictated by the ability of
condition. We then used a Monte Carlo simulation to the model to describe the predominantly Newtonian be-
draw a large numbef1000 of randomG’ and G” data havior of G” at high frequencies. The latter feature is a
sets that had the same noise structure as our measurenovel result in fractional derivative modeling.

ments. We then fitted Eq$12a and (12h) to each data The model predicts a power-law behavior in both fre-
set, and determined the 95% confidence interval of the quency, Egs(9a and (9b), and time, Eqs(10), (A6),
estimated parameters. The 95% confidence intervals wereand (A12), domains. The model also predicts that as the
found to be very narrow, except for estimates(if and frequency increases the frictional modulus” ap-

A, (Table 1. This is mainly becaus€, was far outside  proaches the behavior of Newtonian fluids, E9p). The
(2.01x 10’ rad/s) the frequency range of measurements. predicted behavior in the frequency domain is consistent
The exponentr exhibited a systematic dependence on with experimentally obtained values from living airway
cell treatment(Table 1. In stimulated cellse decreased  smooth muscle cells. Since this consistency extends over
whereas in relaxed cells increased relative to the base five decades of frequency, we concluded that the model
line. In cells with disrupted actin network decreased could capture the essential feature of cell rheological
even further. This, in turn, suggests that rheological be- behavior. Unpublished studies of the creep behavior of
havior of stimulated cells is closer to the behavior of an cultured airway smooth muscle cells indicate a power-
elastic solid than that of relaxed cells or cells with dis- law time dependence, with a power-law exponent of the
rupted actin network. Such a behavior is consistent with creep compliance that closely matched the power-law

previous observations that cell stiffness is higher in exponent determined in the frequency domés Len-
stimulated cells than in relaxed ceffsThis issue and  normand, personal communicationTaken together,
potential mechanisms are further addressed in the Dis-these observations are consistent with the model predic-
cussion. Newtonian viscous damping coefficigntdid tions that the power law-dependences during oscillatory
not exhibit a systematic dependence on the cell treatmentloading [Egs. (98 and (9b)] and creepEgs. (A6) and
(Table 1), suggesting that the state of cell contractility (Al12)] are determined by the same power-law exponent.
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Mechanistic Considerations main facets of the soft glassy rheology. It has been
o ) shown recently that adherent cells belong to the class of
Fabry and colleaguésoffered an intriguing physical  sress-supported structur@sSuch structures secure static
interpretation of their data obtained from oscillatory mechanical stability by maintaining a high degree of
measurements on airway smooth muscle cells. The au-tension within filamentous structural elements. A hall-
thors recognized that the observed power-law behavior mark of such structures is that their stifiness is directly
of cells is consistent with the physics of soft glassy attributable to the pre-existing static stress carried by
materials:> According to this theory, soft glassy materi-  these filamentous elements before load applic&fian.
als are composed of discrete elemefitshatever they e cell, the pre-existing stress is primarily generated by
may be that interact with neighboring elements through ojlecular contractile motors, especially myosin 11, and is
the agency of forces that are weak and complex. Each carried by actin filaments. It was found in cultured air-

such element is imagined to be trapped in an energy well way smooth muscle cells th&@’ is proportional to the
formed by these neighboring elements, abgl is taken maximal cell contractile forceR )%

as an index of the rate at which each element attempts to
hop out of its trap. In the presence of sufficient micros-
cale agitation, elements can hop out of one energy well
and fall into another. Hopping events such as these lead
to a system that is far away from thermodynamic equi-

librium with structure that is characterized by disorder ) )
and metastability. At the glass transitidghe., the state  Wherec is a frequency-dependent factor of proportional-
when these materials behave as perfect elastic 3olids Iy~ In order for Eqs(138 and(14) to be mathematically
these elements cannot escape their energy wells that ar&Onsistent, than at a givem their right-hand sides have
large compared with their local agitation energies. In this {0 P& equal. Since for the values @fx—1 obtained by
case, the effective noise temperatureequals unity and ~ fiting the experimental datérable 1 cosm(x—1)/2~1,
the corresponding stiffness 8,. Whenx>1 the ele-  thiS con3|§tlency requirement implies  thatF s,
ments can escape from their energy wells, however, be-~Co(@/®o)* " Thus, we obtain the following relation-
cause local agitation is sufficient to promote hopping SMiP:

between wells. Asx increases fromk=1 to x=2, the

material undergoes transition from the solid state to the

fluid state. Thus, the effective noisedescribes transition log F max—109(Gq /)
from the solid to the liquid state analogous to the power- X=1~ log(w/® )
law exponenk from Eqgs.(1a) and(1b) and to the order
of the fractional derivativer from Eqgs.(12a and (12b),
i.e., k and a equalx— 1. This analogy betweek and x
led Fabryetal® to the conclusion that the observed

oscillatory cell behavior conforms to the theory of soft ¢ F.. Experimental data testing this prediction show

glassy. mate'rlals. . ] . close correspondence. Using the values dog=2.01
_To investigate whether our model is Con5|ste_nt with % 107 rad/s, G,=38.94kPa, and the value for
this theory, we sef\y=Gg, (o=®, and a=x—1 into =20.8 Pa/nN from the literatur®, we predicted from
Egs. (128 and (12b and obtained that Eq. (15 values forx—1 that correspond td= .y Of
63.93 and 117.30 nN and ®©=0.628 rad/s. The values
o\t m(x-1) of Fnax were measured in cultured airway smooth
cFO cos 2 muscle cells at base line and after stimulation with a
saturated dose of histamine (T0OM).?2 The predicted
values of x—1 of 0.195 at baseline and 0.160 after
histamine closely correspond to experimentally deter-
0|1 m(x—1) mined values ofa of 0.185 and 0.164, respectively
(b) G”=GO(—) sin———+wu. (13 (Table 1. These data lead to a novel and unexpected
Do 2 empirical link between dynamic viscoelastic behavior of
the cytoskeleton and the static contractile stress that it
When x=1, it follows from Eg. (133 that G' =G, and bears. They also indicate an intriguing role of the cytosk-
that the first term in Eq(13b) vanishes, i.e., the elastic eletal contractile stress: while it maintains cell’s struc-
solid behavior. Whex= 2, it follows from Eq.(133 that tural stability under applied mechanical loads, it also
G’'=0 and from Eq.(13b) thatG"xw, i.e., the Newton- regulates cell’'s transition from a solid-like to a fluid-like
ian fluid behavior. Thus, our model is consistent with the behavior that is essential for cell’s function.

G’ =cFmax (14

(19

Since for experimental range of frequenciex®,, Eq.
(15) implies thatx—1 must decrease with the logarithm

(a) G’:Go(

and
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Conclusions

This study showed that fractional calculus is a useful
mathematical tool for analyzing rheological properties of
cells. It is a natural framework for describing the power-

law behavior that has been observed during mechanical
measurements on cultured airway smooth muscle cells.

Although at this point we have no explanation for the
biophysical nature of the fractional derivative, the pro-

posed model leads to a novel relationship which identi-
fies the cytoskeletal contractile stress as a potential regu-

lator of the transition of the cell from a solid-like to a
fluid-like behavior. Furthermore, since the power-law be-
havior is a hallmark of many biological phenomena ob-

served at different scales and at various levels of

organizatior’*68°161%ractional calculus offers a unify-

ing mathematical approach to various problems in
bioengineering and in biophysics.
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APPENDIX

The derivations in this Appendix are based on the
approach described by Doetsth.

To describe the behavior of straig(t) in the vicinity
of t=0, we did the following procedure. In order to
expand the Laplace transform @f(t) in a series that
converges for large values sf we rewrote Eq(11) as
follows:

o To T, 1
[v1= (Gt AS*+pus)s  us? B Gt AS?
us

(A1)

and then expanded the right-hand side of E&fl) as a
binomial series

G+ s\ K

uS

_Tos k(
L= e (D (A2)

Using the binomial formula we expanded each member

on the right-hand side of E4A2) as follows:

DiorDJEVIC et al.

e [ o

By substituting Eq.(A3) into Eq. (A2), we obtained a
series representation af y] as follows:

k )\)k 1
_(; Sl*akjgo

(A4)

By taking the inverse Laplace transform of each term on
the right-hand side of EqA4) we obtained the strain as
a function of time as follows:

P

i=0
The first two terms of the series given by H#5) are

t1+k—a(k=j)

T[2+k—a(k—))]
(A5)

To2

M k=0

y(t)=

o0

tl—a

~oT@ ) tHOT.

(AB)

To
y(t) ;t[l

where HOT indicates higher order terms. Those are mul-
tiples of positive powers of. Thus, it follows from Eq.
(A6) that in the limit oft—0+, y(t)—0.

To describe the behavior of(t) for large values of,
we did the following procedure. In order to expand the
Laplace transform ofy(t) in a series that converges for
small values ofs, we rewrote Eq(11) as follows:

o To T 1
[v1= (Gs+AS“+us)s  Ggs o Mg
Gs

(A7)

1+ A
Gs

We then expanded the right-hand side of E47) as a
binomial series as follows:

k
7
G—SS) . (AS)

TO . k A a
1= g2, 1 gt

Using the binomial formula, the terms on the right-hand
side of Eq.(A8) can be written as follows:

A a H “ A a ‘< (k) K 1-« :
e las B )

(A9)
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By combining Eqs(A8) and (A9), we obtained the fol-
lowing series representation of y]:

= PHE]

By taking the inverse Laplace transform of E#10),
term-by-term, we obtained(t):

&3l
1

)—jJeetenEie
(A11)

1
SETEOEE
(A10)

>

Lly]= P

To
Gs

To <
t =
y(1) ngo

w i
XH 1 a(k—]

The first two terms of the series given by H&l1l) are

-«

= Gl (1-a)

+HOT, (A12

To
y(t) ~ G.

where HOT are negative powers tof Thus it follows
from Eqg. (A1l2) that in the limit of t—oo, (t)
—>T0/GS.
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