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Abstract—Mechanical moduli of cultured airway smoot
muscle cells~Fabry, B.,et al. Phys. Rev. Lett.87:148102, 2001!
reveal that the frequency dependence of cell rheological be
ior conforms to a weak power-law relationship over a wi
range of frequency (1022– 103 Hz). Such a behavior cannot b
accounted for by standard viscoelastic models characterize
a discrete number of time constants that have been comm
used in previous studies of cell viscoelasticity. Fractional c
culus, by contrast, provides a natural framework for describ
weak power-law relationships and requires no assumpti
about the type of material, the time constant distribution or
time/frequency interval in which rheological observations a
made. In this study, we developed a rheological model of
cell using methods of fractional calculus. We used a lea
squares technique to fit the model to data previously obtai
from measurements on airway smooth muscle cells. The
provided an excellent correspondence to the data, and the
mated values of model parameters were physically plausi
The model leads to a novel and unexpected empirical
between dynamic viscoelastic behavior of the cytoskeleton
the static contractile stress that it bears. ©2003 Biomedical
Engineering Society.@DOI: 10.1114/1.1574026#

Keywords—Power law, Elastic modulus, Frictional modulu
Frequency, Modeling, Contractile force.

INTRODUCTION

Rheological measurements on living cells have sho
that cell behavior is viscoelastic. Earlier techniques~e.g.,
micropipette aspiration, magnetic cytometry, microma
ipulation! measured the ongoing deformations in r
sponse to a step change in stress, or the cr
response,3,14,21 and the ongoing changes in stress in
sponse to a step change in deformation, or the st
relaxation.18 These measurements were usually int
preted in terms of simple viscoelastic models charac
ized by a discrete number of time constants. Rec
developments of oscillatory magnetic cytometry call in
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Biomedical Engineering, Boston University, 44 Cummington Stre
Boston, MA 02215. Electronic mail: dimitrij@engc.bu.edu
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question the appropriateness of using these types of m
els for describing the cell rheological behavior, howev
Measurements of mechanical moduli over a wide ran
of forcing frequencies (1022– 103 Hz! in cultured airway
smooth muscle cells have revealed the followi
features.6 The elastic~storage! modulus (G8) increases
with increasing frequency according to a weak pow
law with a power-law exponent of about 0.2. The fri
tional ~loss! modulus (G9) also follows the power law
for at least three decades (1022– 101 Hz), but at higher
frequencies this dependence increases and approach
power-law exponent of 1 at very high frequencie
which, in turn, indicates Newtonian fluid behavior. Th
power-law dependence implies that the cell rheologi
behavior is not determined by specific molecular mec
nisms, but rather might reflect a generic property of t
integrated system.

Fabry and colleagues6 have shown that the observe
power-law behavior of cells conforms closely to the fo
lowing empirically based relationships:

~a! G85G0S v

F0
D k

G~12k!cos
pk

2

and

~b! G95G0S v

F0
D k

G~12k!sin
pk

2
1vm, ~1!

where v is the circular~radian! frequency,G0 and F0

are scaling factors for stiffness and frequency, resp
tively, k is the power-law exponent (0<k,1), m is a
coefficient of Newtonian viscous damping andG(•) is
the gamma function. Whenk50, G85G0 , and G9
5vm, and hence, whenv→0 the cell rheological be-
havior approaches that of Hookean elastic materials
the limit k→12, G8→0, andG9;v, i.e., the behavior



e-

rs
b-
soft

hat
ing

th-
te
for
le

e
on
ture

a

e
eas
ion

und
nd

lity,
yed
fo
e-

ing

l is

r
l
ht-

m
di-

nd

it
the

e-

er
the
-

rm
ak

-

e-

,

e
of
r

ed
d

-
, a

-
ore

ed

av-
e

693Fractional Derivative Model of Cell Rheological Behavior
of Newtonian fluids. Thus, the earlier relationships d
scribe the transition from a solid-like (k50) to a fluid-
like (k51) rheological behavior of cells. The autho
provided an intriguing physical interpretation of the o
served behavior of the cells based on the theory of
glassy materials~see Discussion!.

It has been shown that a rheological behavior t
conforms to the power law can be described by us
methods of fractional calculus.1,11,13,16,19In this study we
used principles of fractional calculus to develop a ma
ematical model of cell rheological behavior. To illustra
the applicability of this model, we analyzed the data
oscillatory behavior of cultured airway smooth musc
cells obtained previously.6 We discuss our results in th
light of the theory of soft glassy materials and the noti
that the cell is organized as a stress-supported struc

BASICS OF FRACTIONAL CALCULUS
AND ITS APPLICATION TO RHEOLOGY

Riemann’s definition of the fractional derivative of
function f (•) is given as follows:12

Dt
(a)~ f ![

1

G~12a!

d

dt E0

t f ~t!

~ t2t!a dt, ~2!

where t is an independent variable, 0<a,1 represents
the order of the derivative, andG(•) is the gamma func-
tion. A key difference between the classical~integer-
order! derivative and the fractional derivative is that th
former represents a local property of a function, wher
the latter represents a global property of a funct
within a given closed interval@0,t#.

During the past decades fractional calculus has fo
a wide application in various branches of science a
engineering including transport phenomena, probabi
and economics. However, fractional calculus has enjo
greatest success in the field of rheology. The reason
this is that fundamental properties of the fractional d
rivative appear to be a natural framework for describ
the material behavior that conforms to a power law.

Suppose that pure shear behavior of a materia
described as follows:

T}Dt
(a)~g!, ~3!

whereT is shear stress,g(t) is the corresponding shea
strain, andt is time. Since, by definition, the fractiona
derivative represents a global property, then the rig
hand side of Eq.~3! is indicative of a change ing
throughout history of deformation. This is different fro
the case of an integer-order derivative that would in
cate only the current change ing. Whena50, it follows
from Eqs.~2! and ~3! that T}Dt

(0)(g)5g(t), providing
.

r

g(0)50; the proportionality between the stress a
strain implies the elastic Hookean behavior. Whena
51, the fractional derivative is not defined. However,
can be shown, using the Laplace transform, that in
limit when a→12, T}Dt

(a)(g)→ġ(t) where the dot
denotes the first time derivative; the proportionality b
tween the stress and the rate of strain (ġ) implies the
Newtonian viscous behavior. Thus, when 0,a,1, Eq.
~3! describes a rheological behavior which is neith
purely elastic nor viscous. In this respect the order of
fractional derivativea is analogous to the power expo
nentk from Eqs.~1a! and ~1b!. By transforming Eq.~3!
into the frequency domain using the Fourier transfo
one can obtain a relationship that conforms to a we
power-law behavior witha being the power-law expo
nent ~see the next section!.

MODELING

A general rheological model based on fractional d
rivatives is described as follows:11

T1bDt
(b)~T!5Gsg1(

i 51

n

l iDt
(a i )~g!, ~4!

where the variables have the same meaning as in Eq.~3!,
b and l is are constants,Gs is a static elastic modulus
0<b,1 and 0<a1,a2,......,an,1 are orders of
the fractional derivatives. In the case ofn51, b50, and
a151, Eq. ~4! becomes the equation of motion for th
Kelvin–Voigt linear viscoelastic model. In the case
n51 and a15b51, Eq. ~4! becomes the equation fo
the standard linear solid. If, in addition,l150, Eq. ~4!
reduces to the Maxwell model. The most frequently us
rheological model with fractional derivatives is so-calle
generalized Zener model1,11,19 which can be obtained
from Eq. ~4! by settingn51. It has been shown1 that for
reasons of thermodynamic consistency~i.e., the second
law of thermodynamics! the following constraints have
to be imposed on the model parameters:a15b, Gs

>0, l1.0, b.0, andl1 /b.Gs so that the model con
tains only four independent parameters. Recently
model that has two fractional derivatives (n52) on the
right-hand side of Eq. ~4! such that a15b was
proposed.13 It was shown that in this model the thermo
dynamic constraints on the model parameters are m
relaxed than in the previous model, i.e.,a2.b and
l1 /b.Gs ; the later condition holds even whenb50.

Model of cell rheology. In this study we describe
previously published data6 for the rheological behavior
of cultured airway smooth muscle cells during forc
oscillations from 1022– 103 Hz using a fractional deriva-
tive model. These data exhibit a weak power-law beh
ior; in the case ofG8 this behavior extends over th
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694 DJORDJEVIC et al.
observed frequency range whereas in the case ofG9 the
power-law behavior is observable below 10 Hz but
higher frequenciesG9 asymptotically approaches the b
havior that characterizes Newtonian fluids~Fig. 1!. To
our knowledge this behavior ofG9 at high frequencies
has not been considered previously in fractional deri
tive models. In this study we incorporated this behav
in the model of the cell.

We started from the general model given by Eq.~4!.
We transformed this equation from the time domain in
the frequency domain using the Fourier integral tra
form, F@•#. Taking into account that the Fourier tran
form of the fractional derivative of a functionf is
F@Dt

(a)( f )#5( iv)aF@ f #, we obtained that F@T#
5G* F@g#, where G* 5G81 iG9 is the complex~dy-

FIGURE 1. „a… Elastic „storage … modulus „G8… and „b… fric-
tional „loss … modulus „G9… measured in cultured airway
smooth muscle cells increase with increasing circular fre-
quency „v… following a weak power law. Above È100 rad Õs,
the dependence G9 vs. v increases and asymptotically ap-
proaches the slope of unity at high frequencies. Different
symbols correspond to different cell stimulations: controls,
constrictor histamine „10À4 M…, relaxant „DBcAMP, 10 À3 M…

and actin disruptor cytoschalasin D „CytoD, 2 Ã10À6 M….
Adopted from data of Fabry et al. „see Ref. 6 …. The theoreti-
cal Eqs. „12a… and „12b… provide a good correspondence to
these data.
namic! modulus andi 5A21 is the imaginary unit. It
was found that

G* 5
Gs1( i 51

n l i~ iv!a i

11b~ iv!b . ~5!

Taking the imaginary part of Eq.~5!, we obtained that in
the limit of v→`:

G9;
ln

b
van2b sin~an2b!

p

2
~6!

when bÞ0, and

G9;lnvan sinan

p

2
~7!

whenb50. If bÞ0 and (an2b)→1, G9 would assume
the observed linear~i.e., Newtonian! dependence onv
@see Eq.~6!#. Since bothan and b take values between
0 and 1, this condition can be satisfied only whenb
→0 andan→1. In this case the left hand side of Eq.~4!
reduces to (11b)T. If, however, we divide Eq.~4! with
(11b), we would obtain an expression which has t
same form as ifb[0. Based on the earlier consideratio
we concluded that we could use Eq.~4! to describe the
behavior ofG9 of the cells at high frequencies only
b50 andan51.

To simulate the data for the oscillatory behavior
airway smooth muscle cells~Fig. 1!, we proposed the
simplest model that satisfies the above conditions,
n52, b50, a251, and defined the parametersl1[l,
l2[m, a1[a where 0<a,1. In this case, Eq.~4!
becomes as follows:

T5Gsg1lDt
(a)~g!1mġ. ~8!

By transforming Eq.~8! into the frequency domain usin
the Fourier integral transform, we obtained the followin
expressions forG8 and G9:

~a! G85Gs1lva cos
pa

2

and

~b! G95lva sin
pa

2
1vm. ~9!

According to Eqs.~9a! and ~9b!, bothG8 andG9 exhibit
a weak power-law dependence onv. As v increases, the
second term on the right-hand side of Eq.~9b! ~i.e., vm!
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695Fractional Derivative Model of Cell Rheological Behavior
becomes dominant which, in turn, implies Newtoni
viscous behavior characterized by viscous dampingm. In
the limit of v50, G85Gs , which represents the stati
elastic modulus.

To completely define the viscoelastic behavior,
model has to be able to describe both stress relaxa
and creep time responses in a self-consistent manner
the input step-straing(t)5g0H(t), whereg0 is a con-
stant andH(t) is the unit step function, we obtaine
from Eq. ~8! the relaxation modulus,G(t)5T(t)/g0 , as
follows:

G~ t !5GsH~ t !1
l

G~12a!

1

ta 1md~ t !, ~10!

whered(t) is the delta function. It follows from Eq.~10!
that for t.0 G(t) decays according to a weak powe
law t2a and asymptotically approaches the static ela
modulus Gs as t→`. For t50, G(0)→` ~i.e., rigid
body behavior!.

The creep response was obtained by assuming
input step-stress,T5T0H(t), where T0 is a constant.
This response, however, could not be obtained dire
from Eq. ~8!, but by transforming this equation using th
Laplace integral transform and then calculating the cr
strain. Taking into account that the Laplace transfor
L@•# of a fractional derivative of a functionf (t) is
L@Dt

(a)#5saL@ f #, wheres the parameter of the transfo
mation, we obtained from Eq.~8! that

L@g#5
T0

~Gs1lsa1ms!s
. ~11!

It is well known that the behavior of the Laplace tran
form of a function in the limits ofs→` and s→0
determines the behavior of the function in the limits
t→0 and t→`, respectively: lims→`,0sL@g#

5 limt→0,̀ g(t), providing that these limits exist.5 Taking
this into account, it follows from Eq.~11! that in the
limits of t→0 and t→`, the creep compliance,J
[g(t)/T0 , approaches 0 and 1/Gs , respectively.@The
existence of the limits limt→0,̀ g(t) is shown in the Ap-
pendix#. Since the theory of linear viscoelasticity d
mands that in the limits oft→0 and t→` G(t)
51/J(t), it follows from the earlier results that th
model can predict the limits of the short and long tim
response of stress relaxation and creep in a s
consistent manner. Fort50, the model predicts a rigid
body behavior~i.e., G→` and J→0). Since such be-
havior is not physically feasible, it follows that th
model predictions in the time domain have physic
meaning only fort.0.
r

e

MODEL IMPLEMENTATION AND RESULTS

We used the model, Eq.~8!, to describe the oscillatory
data of cultured airway smooth muscle cells obtain
previously by Fabryet al.6 Briefly, the measurement
were done using the magnetic oscillatory cytometry te
nique. In these measurements, small~4.5 mm diameter!
ferrimagnetic beads were coated with RGD peptide t
binds specifically to integrin receptors. The beads~2–3
beads per cell apical surface! were first magnetized by
horizontal magnetic field and then twisted by a sin
soidal varying (1022– 103 Hz) vertical magnetic field.
From the applied specific torque and measured co
sponding bead displacement, the complex~dynamic!
stiffness ~dimensions stress per unit displacement! was
obtained as the ratio of the 2. These data were t
transformed into traditional complex~dynamic! modulus
G* ~dimensions stress! by multiplying the complex stiff-
ness by a geometric factor that depends on the shape
thickness of the cell and on the degree of bead intern
ization in the cell.10 The real part ofG* is G8 and the
imaginary part isG9. Measurements were done in co
trol cells, in stimulated cells (1024 M histamine!, in
relaxed cells @1023 M N6,28-O-dibutyryladenosine
38,58-cyclic monophosphate~DBcAMP!#, and in cells in
which the actin network was disrupted (231026 M cit-
ochalasin D!. ~For further details see Fabryet al.!.6

We fitted the model@Eqs.~9a! and~9b!# to the data by
minimizing the squared magnitude of the residuals
logG* summed over all frequencies and all drug tre
ments conditions, with the constraint thatGs>0. The
minimization was performed using Microsoft Exce
solver. We obtained a set of values forGs , l, a, andm
for each cell treatment condition. We found that the p
rameterGs was close to zero for all treatment condition
Using a reduction-in-variance F-test we found that
could eliminate the parameterGs altogether without sig-
nificantly changing the goodness of fit. We introduc
additional simplifications into Eqs.~9a! and ~9b! by set-
ting Gs50 andl5L0 /V0

a :

~a! G85L0S v

V0
D a

cos
pa

2

and

~b! G95L0S v

V0
D a

sin
pa

2
1vm. ~12!

This allowed us to further reduce the number of para
eters by constraining the fit to single values ofL0 and
V0 that were independent of drug treatment~Fig. 1!. We
obtained a unique set of values forL0 and V0 whereas
the values fora and m depended upon cell treatmen
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696 DJORDJEVIC et al.
~Table 1!. Such obtained values fora andm were similar
to those obtained with Eqs.~9a! and ~9b!. In both cases,
Eqs. ~9a! and ~9b! and Eqs.~12a! and ~12b!, estimated
values ofm obtained for different drug treatments did n
seem to change systematically with drug treatme
However, when the same value ofm was used for all
drug treatments, the residual variance increased slig
but significantly (p,0.05).

We analyzed the sensitivity of the fit of Eqs.~12a!
and ~12b! to variability in the data by determining th
95% confidence interval of the parameter estimates.
observed that the variability in the primary data (G8 and
G9) between beads at a given frequency and treatm
was approximately proportional to the magnitude ofG8
or G9, respectively. The underlying log-normal probab
ity function of G8 andG9 in airway smooth muscle cell
has been analyzed in detail elsewhere.6 The logarithmic
standard deviation of bothG8 andG9 measurements wa
approximately 2.1, regardless of frequency and treatm
condition. We then used a Monte Carlo simulation
draw a large number~1000! of randomG8 and G9 data
sets that had the same noise structure as our mea
ments. We then fitted Eqs.~12a! and ~12b! to each data
set, and determined the 95% confidence interval of
estimated parameters. The 95% confidence intervals w
found to be very narrow, except for estimates ofV0 and
L0 ~Table 1!. This is mainly becauseV0 was far outside
(2.013107 rad/s) the frequency range of measuremen

The exponenta exhibited a systematic dependence
cell treatment~Table 1!. In stimulated cellsa decreased
whereas in relaxed cellsa increased relative to the bas
line. In cells with disrupted actin networka decreased
even further. This, in turn, suggests that rheological
havior of stimulated cells is closer to the behavior of
elastic solid than that of relaxed cells or cells with d
rupted actin network. Such a behavior is consistent w
previous observations that cell stiffness is higher
stimulated cells than in relaxed cells.22 This issue and
potential mechanisms are further addressed in the
cussion. Newtonian viscous damping coefficientm did
not exhibit a systematic dependence on the cell treatm
~Table 1!, suggesting that the state of cell contractili

TABLE 1. Estimated model parameters. Parameter values L0 ,
V0 , a, and m obtained by fitting Eqs. „12a… and „12b… to the
experimental data of Fabry et al. „see Ref. 6 …. Confidence
intervals are given with each parameter value. The values of

L0 and V0 are the same for all cell treatments.

Treatment
L0

(kPa)
q0

(rad/s) a
m

(Pa•s)

Control 38.930.7
47.2 2.010.83

4.873107 0.1850.180
0.190 1.761.59

1.93

Histamine 0.1640.158
0.169 1.231.09

1.37

DBcAMP 0.2560.251
0.260 1.501.36

1.63

CytoD 0.3130.307
0.320 0.780.70

0.86
t

t

e-

e

-

t

has no direct effect onm. This is not surprising since if
m were indicative of cell cytoplasmic viscosity, then
should not depend on the extent of contractile stress
the cytoskeleton.

DISCUSSION

In this study we developed a mathematical mod
based on the principles of fractional calculus to descr
the rheological behavior airway smooth muscle ce
The most favorable aspect of this approach is tha
represents a natural mathematical framework for desc
ing the power-law behavior that is exhibited by the cel
Such a behavior can be also accounted for by gene
ized viscoelastic models that are described by heredi
integrals@generalized Maxwell and generalized Kelvin
Voigt models~cf. Fung!#.7 However, in all such models a
distribution of time constants needs to be prescribed e
pirically, whereas in models with fractional derivative
such a distribution is a consequence of the definition
the fractional derivative. Another advantage of the fra
tional derivative formulation is that it is described b
linear integrodifferential equations. This, in turn, mak
possible easy transfer between the time and freque
domains using the Fourier and Laplace integ
transforms.

Selection of model parameters was not entirelyad
hoc. Besides satisfying thermodynamic constrains, val
of model parameters were also dictated by the ability
the model to describe the predominantly Newtonian
havior of G9 at high frequencies. The latter feature is
novel result in fractional derivative modeling.

The model predicts a power-law behavior in both fr
quency, Eqs.~9a! and ~9b!, and time, Eqs.~10!, ~A6!,
and ~A12!, domains. The model also predicts that as
frequency increases the frictional modulusG9 ap-
proaches the behavior of Newtonian fluids, Eq.~9b!. The
predicted behavior in the frequency domain is consist
with experimentally obtained values from living airwa
smooth muscle cells. Since this consistency extends o
five decades of frequency, we concluded that the mo
could capture the essential feature of cell rheologi
behavior. Unpublished studies of the creep behavior
cultured airway smooth muscle cells indicate a pow
law time dependence, with a power-law exponent of
creep compliance that closely matched the power-
exponent determined in the frequency domain~G. Len-
normand, personal communication!. Taken together,
these observations are consistent with the model pre
tions that the power law-dependences during oscillat
loading @Eqs. ~9a! and ~9b!# and creep@Eqs. ~A6! and
~A12!# are determined by the same power-law expone
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697Fractional Derivative Model of Cell Rheological Behavior
Mechanistic Considerations

Fabry and colleagues6 offered an intriguing physica
interpretation of their data obtained from oscillato
measurements on airway smooth muscle cells. The
thors recognized that the observed power-law beha
of cells is consistent with the physics of soft glas
materials.15 According to this theory, soft glassy mater
als are composed of discrete elements~whatever they
may be! that interact with neighboring elements throu
the agency of forces that are weak and complex. E
such element is imagined to be trapped in an energy w
formed by these neighboring elements, andF0 is taken
as an index of the rate at which each element attempt
hop out of its trap. In the presence of sufficient micro
cale agitation, elements can hop out of one energy w
and fall into another. Hopping events such as these l
to a system that is far away from thermodynamic eq
librium with structure that is characterized by disord
and metastability. At the glass transition~i.e., the state
when these materials behave as perfect elastic so!
these elements cannot escape their energy wells tha
large compared with their local agitation energies. In t
case, the effective noise temperature,x, equals unity and
the corresponding stiffness isG0 . When x.1 the ele-
ments can escape from their energy wells, however,
cause local agitation is sufficient to promote hoppi
between wells. Asx increases fromx51 to x52, the
material undergoes transition from the solid state to
fluid state. Thus, the effective noisex describes transition
from the solid to the liquid state analogous to the pow
law exponentk from Eqs.~1a! and ~1b! and to the order
of the fractional derivativea from Eqs.~12a! and ~12b!,
i.e., k and a equalx21. This analogy betweenk and x
led Fabry et al.6 to the conclusion that the observe
oscillatory cell behavior conforms to the theory of so
glassy materials.

To investigate whether our model is consistent w
this theory, we setL05G0 , V05F0 and a5x21 into
Eqs. ~12a! and ~12b! and obtained that

~a! G85G0S v

F0
D x21

cos
p~x21!

2

and

~b! G95G0S v

F0
D x21

sin
p~x21!

2
1vm. ~13!

When x51, it follows from Eq. ~13a! that G85G0 and
that the first term in Eq.~13b! vanishes, i.e., the elasti
solid behavior. Whenx52, it follows from Eq.~13a! that
G850 and from Eq.~13b! that G9}v, i.e., the Newton-
ian fluid behavior. Thus, our model is consistent with t
-

l

e

-

main facets of the soft glassy rheology. It has be
shown recently that adherent cells belong to the class
stress-supported structures.22 Such structures secure stat
mechanical stability by maintaining a high degree
tension within filamentous structural elements. A ha
mark of such structures is that their stiffness is direc
attributable to the pre-existing static stress carried
these filamentous elements before load application.20 In
the cell, the pre-existing stress is primarily generated
molecular contractile motors, especially myosin II, and
carried by actin filaments. It was found in cultured a
way smooth muscle cells thatG8 is proportional to the
maximal cell contractile force (Fmax)

22:

G85cFmax, ~14!

wherec is a frequency-dependent factor of proportion
ity. In order for Eqs.~13a! and~14! to be mathematically
consistent, than at a givenv their right-hand sides have
to be equal. Since for the values ofa5x21 obtained by
fitting the experimental data~Table 1! cosp(x21)/2'1,
this consistency requirement implies that:cFmax

'G0(v/F0)
x21. Thus, we obtain the following relation

ship:

x21'
logFmax2 log~G0 /c!

log~v/F0!
. ~15!

Since for experimental range of frequenciesv!F0 , Eq.
~15! implies thatx21 must decrease with the logarithm
of Fmax. Experimental data testing this prediction sho
close correspondence. Using the values forF052.01
3107 rad/s, G0538.94 kPa, and the value forc
520.8 Pa/nN from the literature,22 we predicted from
Eq. ~15! values for x21 that correspond toFmax of
63.93 and 117.30 nN and tov50.628 rad/s. The value
of Fmax were measured in cultured airway smoo
muscle cells at base line and after stimulation with
saturated dose of histamine (1025 M).22 The predicted
values of x21 of 0.195 at baseline and 0.160 aft
histamine closely correspond to experimentally det
mined values ofa of 0.185 and 0.164, respectivel
~Table 1!. These data lead to a novel and unexpec
empirical link between dynamic viscoelastic behavior
the cytoskeleton and the static contractile stress tha
bears. They also indicate an intriguing role of the cytos
eletal contractile stress: while it maintains cell’s stru
tural stability under applied mechanical loads, it al
regulates cell’s transition from a solid-like to a fluid-lik
behavior that is essential for cell’s function.
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Conclusions

This study showed that fractional calculus is a use
mathematical tool for analyzing rheological properties
cells. It is a natural framework for describing the powe
law behavior that has been observed during mechan
measurements on cultured airway smooth muscle c
Although at this point we have no explanation for t
biophysical nature of the fractional derivative, the pr
posed model leads to a novel relationship which ide
fies the cytoskeletal contractile stress as a potential re
lator of the transition of the cell from a solid-like to
fluid-like behavior. Furthermore, since the power-law b
havior is a hallmark of many biological phenomena o
served at different scales and at various levels
organization,2,4,6,8,9,16,17fractional calculus offers a unify
ing mathematical approach to various problems
bioengineering and in biophysics.
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APPENDIX

The derivations in this Appendix are based on t
approach described by Doetsch.5

To describe the behavior of straing(t) in the vicinity
of t50, we did the following procedure. In order t
expand the Laplace transform ofg(t) in a series that
converges for large values ofs, we rewrote Eq.~11! as
follows:

L@g#5
T0

~Gs1lsa1ms!s
5

T0

ms2

1

11
Gs1lsa

ms
~A1!

and then expanded the right-hand side of Eq.~A1! as a
binomial series

L@g#5
T0

ms2 (
k50

`

~21!kS Gs1lsa

ms D k

. ~A2!

Using the binomial formula we expanded each mem
on the right-hand side of Eq.~A2! as follows:
l
.

-

d

S Gs1lsa

ms D k

5S l

m D k 1

s(12a)k (
j 50

k S k
j D S Gs

lsaD j

. ~A3!

By substituting Eq.~A3! into Eq. ~A2!, we obtained a
series representation ofL@g# as follows:

L@g#5
T0

m (
k50

` S 2
l

m D k

(
j 50

k S k
j D S Gs

l D j 1

s21k2a(k2 j ) .

~A4!

By taking the inverse Laplace transform of each term
the right-hand side of Eq.~A4! we obtained the strain a
a function of time as follows:

g~ t !5
T0

m (
k50

` S 2
l

m D k

(
j 50

k S k
j D S Gs

l D j t11k2a(k2 j )

G@21k2a~k2 j !#
.

~A5!

The first two terms of the series given by Eq.~A5! are

g~ t ! ;
T0

m
tF12

lt12a

mG~32a!G1HOT, ~A6!

where HOT indicates higher order terms. Those are m
tiples of positive powers oft. Thus, it follows from Eq.
~A6! that in the limit of t→01, g(t)→0.

To describe the behavior ofg(t) for large values oft,
we did the following procedure. In order to expand t
Laplace transform ofg(t) in a series that converges fo
small values ofs, we rewrote Eq.~11! as follows:

L@g#5
T0

~Gs1lsa1ms!s
5

T0

Gss

1

11
l

Gs
sa1

m

Gs
s

.

~A7!

We then expanded the right-hand side of Eq.~A7! as a
binomial series as follows:

L@g#5
T0

Gss
(
k50

`

~21!kS l

Gs
sa1

m

Gs
sD k

. ~A8!

Using the binomial formula, the terms on the right-ha
side of Eq.~A8! can be written as follows:

S l

Gs
sa1

m

Gs
sD k

5S l

Gs
saD k

(
j 50

k S k
j D S m

l
s12aD j

.

~A9!
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By combining Eqs.~A8! and ~A9!, we obtained the fol-
lowing series representation ofL@g#:

L@g#5
T0

Gs
(
k50

` S 2
l

Gs
D k

(
j 50

k S k
j D S m

l D j 1

s12a(k2 j )2 j .

~A10!

By taking the inverse Laplace transform of Eq.~A10!,
term-by-term, we obtainedg(t):

g~ t !5
T0

Gs
(
k50

` S 2
l

Gs
D k

(
j 50

k S k
j D

3S m

l D j 1

G@12a~k2 j !2 j #ta(k2 j )1 j .

~A11!

The first two terms of the series given by Eq.~A11! are

g~ t ! ;
T0

Gs
F12

lt2a

GsG~12a!G1HOT, ~A12!

where HOT are negative powers oft. Thus it follows
from Eq. ~A12! that in the limit of t→`, g(t)
→T0 /Gs .
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